By hitting electrons with an ultra-intense laser, researchers have revealed dynamics that go beyond ‘classical’ physics and hint at quantum effects.
Solar flares, cosmic radiation, and the northern lights are well-known phenomena. But exactly how their enormous energy arises is not as well understood. Now, physicists at Chalmers University of Technology, Sweden, have discovered a new way to study these spectacular space plasma phenomena in a laboratory environment.
Light consists of a flow of photons. If two waveguides – cables for light – lie side by side, they attract or repel each other. The interaction is due to the optical force, but the effect is usually extremely small. Physicists at Chalmers University of Technology and Free University of Brussels have now found a method to significantly enhance the optical force. The method opens new possibilities within sensor technology and nanoscience. The results were recently published in the prestigious scientific journal Physical Review Letters.